

## Fit Statistics commonly reported for CFA and SEM

There are more than a dozen different fit statistics researchers use to assess their confirmatory factor analyses and structural equation models. Here we have assembled a list of the most popular fit statistics used and recommended cut-offs that indicate a good fit.

| Measure           | Name                                                | Description                                                                                                                                                                                                                                        | Cut-off for good fit      |
|-------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| X <sup>2</sup>    | Model Chi-<br>Square                                | Assess overall fit and the discrepancy between<br>the sample and fitted covariance matrices.<br>Sensitive to sample size.<br>$H_0$ : The model fits perfectly.                                                                                     | p-value><br>0.05          |
| (A)GFI            | (Adjusted)<br>Goodness of Fit                       | GFI is the proportion of variance accounted<br>for by the estimated population covariance.<br>Analogous to R <sup>2</sup> . AGFI favors parsimony.                                                                                                 | GFI ≥ 0.95<br>AGFI ≥0.90  |
| (N)NFI<br>TLI     | (Non) Normed-<br>Fit Index<br>Tucker Lewis<br>index | An NFI of .95, indicates the model of interest<br>improves the fit by 95% relative to the null<br>model. NNFI is preferable for smaller samples.<br>Sometimes the NNFI is called the Tucker Lewis<br>index (TLI)                                   | NFI ≥ 0.95<br>NNFI ≥ 0.95 |
| CFI               | Comparative Fit<br>Index                            | A revised form of NFI. Not very sensitive to<br>sample size. Compares the fit of a target<br>model to the fit of an independent, or null,<br>model.                                                                                                | CFI ≥.90                  |
| RMSEA             | Root Mean<br>Square Error of<br>Approximation       | A parsimony-adjusted index. Values closer to 0 represent a good fit.                                                                                                                                                                               | RMSEA <<br>0.08           |
| (S)RMR            | (Standardized)<br>Root Mean<br>Square Residual      | The square-root of the difference between<br>the residuals of the sample covariance matrix<br>and the hypothesized model. If items vary in<br>range (i.e. some items are 1-5, others 1-7)<br>then RMR is hard to interpret, better to use<br>SRMR. | SRMR <0.08                |
| AVE<br>(CFA only) | Average Value<br>Explained                          | The average of the R <sup>2</sup> s for items within a factor                                                                                                                                                                                      | AVE >.5                   |

Kline suggests that at a minimum the following indices should be reported:

- 1) The model chi-square
- 2) RMSEA
- 3) CFI
- 4) SRMR

How to estimate these fit indices:

- In R, use the FitMeasures function from the lavaan package.
- In SAS's Proc Calis, specify the fitindex option with the particular indices you want.
- In Stata, after executing a CFA or SEM, use the command: estat gof, stats(all)

References:

Principles and Practice of Structural Equation Modeling. Rex B. Kline. 2005.

Structural Equation Modelling: Guidelines for Determining Model Fit. Daire Hooper, et al. 2008.